Learning Robot Control
نویسنده
چکیده
Learning robot control, a subclass of the field of learning control, refers to the process of acquiring a sensory-motor control strategy for a particular movement task and movement system by trial and error. Learning control is usually distinguished from adaptive control (see ADAPTIVE CONTROL) in that the learning system is permitted to fail during the process of learning, while adaptive control emphasizes single trial convergence without failure. Thus, learning control resembles the way that humans and animals acquire new movement strategies, while adaptive control is a special case of learning control that fulfills stringent performance constraints, e.g., as needed in life-critical systems like airplanes and industrial robots.
منابع مشابه
Adaptive Inverse Control of Flexible Link Robot Using ANFIS Based on Type-2 Fuzzy
This paper presents a novel adaptive neuro-fuzzy inference system based on interval Gaussian type-2 fuzzy sets in the antecedent part and Gaussian type-1 fuzzy sets as coefficients of linear combination of input variables in the consequent part. The capability of the proposed ANFIS2 for function approximation and dynamical system identification is remarkable. The structure of ANFIS2 is very sim...
متن کاملA New Type-2 Fuzzy Systems for Flexible-Joint Robot Arm Control
In this paper an adaptive neuro fuzzy inference system based on interval Gaussian type-2 fuzzy sets in the antecedent part and Gaussian type-1 fuzzy sets as coefficients of linear combination of input variables in the consequent part is presented. The capability of the proposed method (we named ANFIS2) to function approximation and dynamical system identification is shown. The ANFIS2 structure ...
متن کاملDynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)
In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...
متن کاملA Q-learning Based Continuous Tuning of Fuzzy Wall Tracking
A simple easy to implement algorithm is proposed to address wall tracking task of an autonomous robot. The robot should navigate in unknown environments, find the nearest wall, and track it solely based on locally sensed data. The proposed method benefits from coupling fuzzy logic and Q-learning to meet requirements of autonomous navigations. Fuzzy if-then rules provide a reliable decision maki...
متن کاملA New Intelligent Approach to Patient-cooperative Control of Rehabilitation Robots
This paper presents a new intelligent method to control rehabilitation robots by mainly considering reactions of patient instead of doing a repetitive preprogrammed movement. It generates a general reference trajectory based on different reactions of patient during therapy. Three main reactions has been identified and included in reference trajectory: small variations, force shocks in a single ...
متن کاملبهبود یادگیری رفتار روبات سیار دارای خطا در سنسورهای آن با استفاده از شبکه بیزین
In this paper a new structure based on Bayesian networks is presented to improve mobile robot behavior, in which there exist faulty robot sensors. If a robot likes to follow certain behavior in the environment to reach its goal, it must be capable of making inference and mapping based on prior knowledge and also should be capable of understanding its reactions on the environment over time. Old ...
متن کامل